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Improving Large Language Models With Combinatorial Optimization
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Introduction: The rise in popularity of autoregres-
sive architectures for artificial intelligence such as Large
Language Models (LLMs) marks a significant step to-
wards artificial general intelligence (AGI). However, the
same architecture makes these LLMs prone to halluci-
nation—defined as generation that is nonsensical or un-
faithful to source material [1]. Furthermore, it is com-
monly accepted that LLMs lack the ability to plan or
reason, which limits their potential in high-value tasks
requiring those skills.

One approach to handling these limitations is to provide
additional retrieved context to reduce improper gener-
ations. Techniques such as retrieval augmented genera-
tion (RAG) query a vector database to retrieve source
material before generating the LLM response [2]. This
approach is particularly suitable for knowledge inten-
sive tasks but does not generalize well to reasoning-
intensive tasks. A parallel area of research is improve-
ments to prompt engineering and response decoding. A
new method dubbed Chain of Thought concatenates
hand-annotated example responses with reasoning to
the query to create the prompt [3]. The responses from
the LLM mimic the examples and contain a ‘reasoning
path’ followed by the answer. Another method devel-
oped a complementary decoding approach, named Self-
Consistency, with the idea being that marginalizing over
several reasoning paths provides the best possible re-
sponse [4]. However, these approaches rely heavily on
human annotations and the same static examples may
not be relevant to different queries.

Method: Combinatorial Reasoning (CR) supplements
these approaches, dynamically creating the best reason-
ing path to answer a query without the need for human
annotations. Inspired by Self-Consistency, we postulate
that creating ”Chain-of-Thought” style reasoning paths
can be modeled as a discrete optimization problem.
We first sample the LLM for reasons relevant to the
query and then translate our sampling outcomes into a
quadratic unconstrained binary optimization (QUBO)
problem. Our optimization problem will consist of a set
of linear terms and quadratic terms. Our linear terms,
which represent the reasons being picked as part of the
context, scale with how frequently reasons occur in our
samples. Quadratic terms, which are terms associated

‘ Technique ‘ LLM ‘ Accuracy (%) H
Zero-Shot gpt-3.5-turbo 28.0
Chain of Thought gpt-3.5-turbo 40.8
Self-Consistency gpt-3.5-turbo 48.9
Combinatorial Reasoning | gpt-3.5-turbo 50.2

Figure 1: Accuracies of the methods on
logical deduction 7 objects task. We recreated
CoT and SC using the techniques described in
references [3] & [4]. The tests were ran on a
smaller subset of the whole task.

with two reasons, scale based on how likely we are to ob-
serve two reasons occurring together in as sample. By
selecting the optimal reasons from solving the QUBO,
we create a prompt containing a relevant reasoning path
for the original query. The current CR workflow, rep-
resented in figure 2, can be readily combined with re-
trieval based methods for the sampling and cutting-edge
prompt engineering techniques for decoding.

This Combinatorial Reasoning method developed by
Icosa involves many hyperparameters. One such ex-
ample is relative sensitivity to the linear and quadratic
terms. Hyperparameter optimization is required to con-
vert the best solution found through discrete optimiza-
tion into the best possible response from an LLM. Such
a hyperparameter optimization is provided as part of
Icosa’s commercial product.

The total time to get an answer is the following:

Ttotal = Tsam ling To timization T T romptin
pling P P pting

Tiotal = total time to solution
Tsample = time to generate multiple reasoning samples
Toptimization = time to select optimal reasons

Tprompting = time to execute CR prompt

When performing question and answer tasks over chat,
users typically would like to see a response in less than
5 seconds. For the sampling of reasons, the LLM can
be called in parallel, therefore Tsample is roughly the
time to make a single LLM call (~ 1 second). The fi-
nal prompting stage also involves making a single LLM
call, so Tprompting ~ 1 second. Thus having a short
Toptimization in the 3 second range is important to cre-
ate quick responses.

mert@icosacomputing.com



Sampled Answers + Reasons Graph

Discrete Optimization

Answer

TS
..... , —, ' X H(o) = - Z Jijoio; — /"Z hjo;
" : WY ,

@3 i

eeeee

Reason1:.... |

Reason 7 -

“h’ proportional to Reason i
occurence

4, proportional to Reason i & j
occurring together

Figure 2: CR Workflow

Digital Annealer: Fujitsu’s Digital Annealer is a spe-
cial accelerator that speeds up combinatorial optimiza-
tion, integrated into an operational setting with con-
ventional hardware in a hybrid environment. It pro-
vides up to 10,000 times faster performance than indus-
try standard compute systems running with commer-
cial servers [5], and it already supports an 100,000-bit,
fully-connected architecture. This ground-breaking of-
fering is inspired by the key characteristics of quantum
computing: superposition, quantum tunneling and en-
tanglement, enabling the Digital Annealer to evaluate
multiple potential options simultaneously — and to de-
liver lightning-fast insights.

By formulating improvements to LLMs as a discrete op-
timization problem, combinatorial reasoning can lever-
age the Digital Annealer to provide higher quality re-
sponses and avoid timing and selection problems com-
mon to classical methods. Solving large QUBO prob-
lems — an essential part of Combinatorial Reasoning —
takes minutes to hours using classical methods. The
current use-cases for LLMs depend on their quick re-
sponse times, and thus long inference times is a poten-
tial roadblock for Combinatorial Reasoning. Further-
more, such classical techniques can find suboptimal so-
lutions if the optimization landscape is glassy [6]. The
Digital Annealer circumvents these issues, solving the
QUBO problems near instantaneously while also pro-
viding higher quality solutions, leading to higher quality
LLM responses.

Results: To benchmark Combinatorial Reasoning as
well as Fujitsu’s Digital Annealer, we looked at fixed
answer text generation tasks that require reasoning. An
industry standard collection of datasets for this task is
Big Bench Hard [7], and we selected Logical Deduction
(7 objects) from this as the dataset of interest. Logical
Deduction tasks provide information about the order-
ing of a collection of objects and then query about the
location of a specific object. CR has demonstrated bet-
ter accuracy than methods such as Chain of Thought
and Self-Consistency on this task (See Figures 1). As
a dynamic method, CR creates a specific prompt with
the best reasoning path tailored to the question. It
overcomes the limitations of methods requiring human-
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Figure 3: The solving times from Digital
Annealing compared to those of simulated
annealing. Digital Annealer’s advantage grows
as problem size increases.

annotated static examples, and thereby improves the ac-
curacy on reasoning intensive tasks.

The tuned CR model used for this benchmark requires
solving QUBO problems with (on average) 900 linear
fully connected variables. While classical solvers are
able to tackle problems of this size, they require long
wait times before optimal solutions are reached. We
note that for the classical solver, we used D-Wave Sys-
tems’ open-source implementation of simulated anneal-
ing with 1000 sweeps and 100 reads. We selected this
configuration as a lower number of sweeps and reads
found poorer solutions and impacted performance. Fig-
ures 3 & 4 demonstrates the 10-50x speed up that the
Digital Annealer provides while solving the same QUBO
problems. We note that such fast solving time is cru-
cial in integrating combinatorial reasoning into current
language model use cases. Furthermore, there exist cer-
tain problems where — due to combination of problem
sizes and difficult optimization landscapes — the Dig-
ital Annealer finds higher quality solutions in terms of
the energy. We observed this phenomena for another
reasoning dataset from Big Bench Hard: formal falla-
cies. We note that this was obtained with a different
CR model with no hyperparameter tuning. With Icosa’s
proprietary hyperparameter tuning, the better solutions
corresponding to lower energies can be converted into
superior LLM responses.

Conclusions: Our results show that Combinatorial
Reasoning was able to achieve slightly better results
than CoT and Self-Consistency with no need for hand
annotations. Using Fujitsu’s digital annealer, we were
able to get the total solution time that is in the 5 second
range.

We note that the speedup we observed is not the same as
the time we spent waiting for a solution. Even though
we have not found a conclusive explanation for this
phenomena, we believe that there are three possible ex-
planations. Each time we use the Digital Annealer to
solve an optimization problem, the environment may be
going through a setup process which results in additional
time being spent. There is also the concern that, due
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Number of | Avg. # of Avg. # of Avg. Time
Problems | Linear Terms | Quadratic Terms | Difference (s)
2 585.0 170838.0 -12.7
3 670.0 224794.0 -15.9
3 776.0 300827.0 -19.9
5 859.8 369696.0 -25.4
4 960.8 461495.3 -30.2
4 1053.8 555199.5 -34.0
3 1152.0 663033.0 -39.2
3 1263.0 797694.0 -40.5

Figure 4: The time-improvement of Digital
Annealing over classical methods. The time
difference column is time taken by classical
method subtracted from time taken by Digital
Annealer.

to the size of the problems we are tackling, a substan-
tial amount of time may be spent on transferring the
necessary data from our environment to the Digital An-
nealer’s environment. Finally, it may be the case that,
due to our shared access to the Digital Annealer, some
of the excess time spent on waiting for a solution may
be caused by having to wait for access while the Digital
Annealer is being used.

However, despite the minor issues, the performance
of the Digital Annealer is extremely promising. The
speedups which we have observed will be crucial for
the commercial applications of our combinatorial rea-
soning methods. Users cannot be expected to wait for
up to almost a minute for classical methods to provide
a solution, when the Digital Annealer can find the same
solution in a fraction of the time. Furthermore, our re-
cent discovery of problems which classical solvers greatly
struggle with provide an entirely new area in which the
Digital Annealer will be necessary. We believe that these
problems will demonstrate that quantum-inspired meth-
ods such as the Digital Annealer will provide tangible
improvements to generative language models.
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